

ЦЕНТР КОМПЕТЕНЦИЙ НТИ

на базе НИУ "МЭИ"

ТЕХНОЛОГИИ ТРАНСПОРТИРОВКИ ЭЛЕКТРОЭНЕРГИИ И РАСПРЕДЕЛЕННЫХ ИНТЕЛЛЕКТУАЛЬНЫХ ЭНЕРГОСИСТЕМ

Центр НТИ «Технологии транспортировки электроэнергии и распределенных интеллектуальных энергосистем»

УТВЕРЖДЕНО

Директор

Центра НТИ МЭИ

А.А. Волошин.

*21» 607 20 25r.

Документация, содержащая информацию, необходимую для эксплуатации экземпляра программного обеспечения

Состав программного обеспечения:

Программный модуль «Модуль эквивалентирования схемы электрической сети»

РАЗРАБОТЧИК

Начальник отдела ОНИ НТИ МЭИ

Е.А. Волошин.

«21» 07 2025r

СОГЛАСОВАНО

Ведущий научный сотрудник ОНИ НТИ МЭИ

А.А. Лебедев.

20 25r

СОДЕРЖАНИЕ

1.	Общие сведения	3
2.	Краткий обзор	3
	Описание файла конфигурации EENCRegistration.json	
	Описание файла результата работы ПО EQUIVALENT.json	

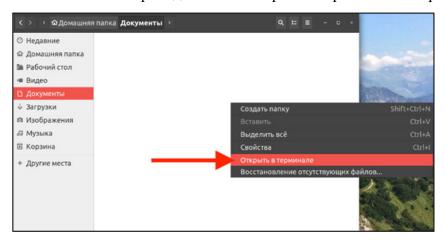
1. Общие сведения

Настоящий документ распространяется на программное обеспечение «Программный модуль «Модуль эквивалентирования схемы электрической сети».

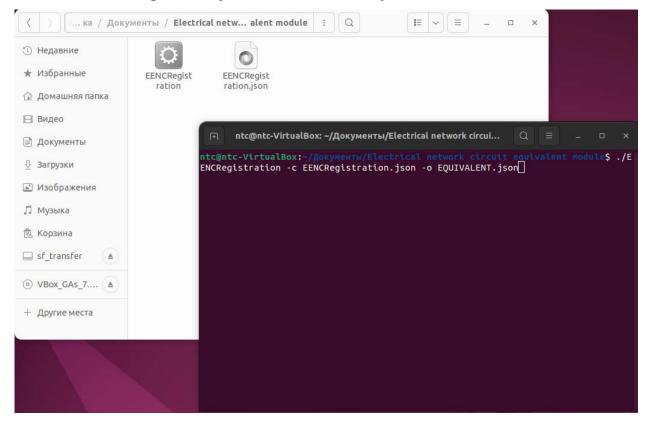
Программное обеспечение «Программный модуль «Модуль эквивалентирования схемы электрической сети» — взаимосвязанный и неразрывный комплект программного обеспечения, в который входят программные компоненты: файл конфигурации в формате JSON, модуль эквивалентирования схемы электрической сети., реализующий бизнеслогику модуля.

Программное обеспечение «Программный модуль «Модуль эквивалентирования схемы электрической сети» предназначено для синтеза эквивалента схемы электрической сети и расчета параметров эквивалента схемы электрической сети.

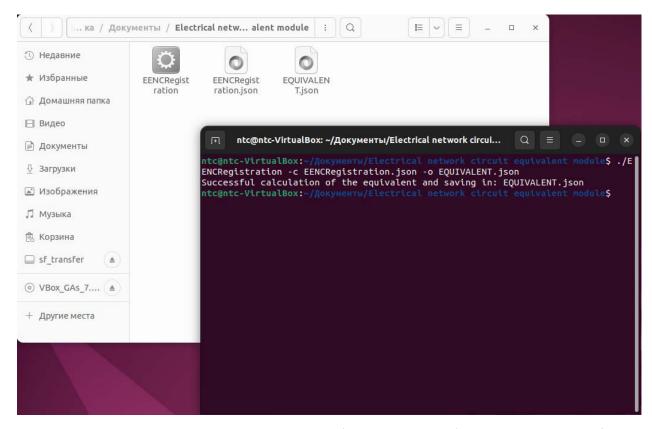
Синтез эквивалента схемы электрической сети основан на методе эквивалентного генератора. Где к каждой граничной точке, соединяющей эквивалентируемую и исследуемую части электрической сети, присоединены эквивалентные линейное сопротивление и источник ЭДС. Помимо указанных элементов, эквивалент учитывает взаимные магнитные сопротивления между ветвями эквивалента (ветвями каждой граничной точки). Параметры эквивалента представляют из себя матрицу ЭДС источников и матрицу линейных сопротивлений и взаимных магнитных сопротивлений. Для определения параметров эквивалента используются опыты холостого хода и короткого замыкания эквивалентируемой части электрической сети в граничных точках.


Указанное программное обеспечение может быть использовано в качестве отдельного приложения, так и может быть интегрировано в состав программных модулей ПАК ЦДЭС и осуществлять обмен сообщениями со смежными приложениями посредством брокера сообщений Apache Kafka.

2. Краткий обзор


Для работы с программным обеспечением «Программный модуль «Модуль эквивалентирования схемы электрической сети» необходимо выполнить шаги:

• Согласно «Инструкции по установке экземпляра ПО «Модуль эквивалентирования» выполнить установку ПО.


• Перейти в директорию с ПО «Модуль эквивалентирования схемы электрической сети» и нажать правой кнопкой мыши на свободное место в каталоге. Далее в контекстном меню выбрать действие «Открыть в терминале» / «Open in terminal».

• Выполнить в консоли команду sudo ./EENCRegistration -с EENCRegistration.json -о EQUIVALENT.json.

- Убедиться о наличии в консоли сообщения «Successful calculation of the equivalent and saving in: EQUIVALENT.json».
- Убедиться о наличии в директории с ПО сгенерированного файла EQUIVALENT.json в формате JSON, который является результатом выполнения ПО.

• Для проверки корректности работы ПО необходимо открыть файлы EQUIVALENT.json и EENCRegistration.json убедиться, что данные, содержащиеся в файлах, соответствуют данным, приведенным в п. 3 и п. 4.

3. Описание файла конфигурации EENCRegistration.json

В JSON-файле приведена конфигурация участка электрической схемы, для которой необходимо выполнить эквивалентирование. Конфигурация участка электрической схемы представлена в виде внутренней информационной модели элементов схемы и связей между элементами.

Помимо конфигурации участка электрической схемы в JSON-файле приведена конфигурация (описание) задачи для эквивалентирования. Эта конфигурация представляет из себя описание точек-границ эквивалента, посредством которых эквивалент будет связан с неэквивалентируемой частью схемы сети.

```
{
    "phcimConfiguration": {
        "simulationID" : "",
        "simulationConfiguration" : {
            "nominalFrequency" : 50,
            "timeOfCalculationMs" : 0
        },
        "modelConfiguration" : {
            "elements": {
```

```
"C1": {
    "type": "POWER SYSTEM EQUIVALENT",
   "name": "C1",
    "settingsPrimitive" : {
     "VOLTAGE LINE TO LINE": 110,
     "ANGLE OF PHASE A": 10,
     "IMPEDANCE POS SEQ": 1,
     "ANGLE OF IMPEDANCE POS SEQ": 45,
     "IMPEDANCE NEG SEQ": 1,
     "ANGLE OF IMPEDANCE NEG SEQ": 45,
     "IMPEDANCE ZERO SEQ": 5,
     "ANGLE OF IMPEDANCE ZERO SEQ": 70
  "connections": {
   "onePhaseConnections": [],
   "threePhaseConnections": [],
   "threePhaseGroundConnections": [],
   "onePhaseGroundConnections": []
"id": "ID EQUIVALENT",
"equivalentSides": [
 "id": "PORT 1A",
 "idElement": "C1",
 "sideElement": "FIRST",
  "phase": "A"
  "id": "PORT_1B",
 "idElement": "C1",
 "sideElement": "FIRST",
 "phase": "B"
 "id": "PORT 1C",
 "idElement": "C1",
 "sideElement": "FIRST",
 "phase": "C"
```

4. Описание файла результата работы ПО EQUIVALENT.json

В JSON-файле приведено описание сгенерированного элемента «эквивалент». Элемент описывают параметры — значения ЭДС каждого источника ЭДС и значения линейных сопротивлений, которые присоединяются к точкам-граница, посредством которых

эквивалент присоединяется к неэквивалентируемому участку электрической сети. Помимо указанных параметров элементы описывают взаимные магнитные сопротивления между всеми линейными сопротивлениями.

```
"id": "ID EQUIVALENT",
"emfValues" : {
  "rows": 3,
  "cols": 1,
  "values" : [
       "real": -40.822495942638085,
       "imag": 48.650356199000136
       "real": -21.721196400176826,
       "imag": -59.67849663171182
       "real": 62.5436923428149,
       "imag": 11.028140432711691
  ]
"zValues" : {
  "rows": 3,
  "cols": 3,
  "values" : [
       "real": 1.0414380944500656,
       "imag": 2.0375588890748704
    },
       "real": 0.3343313111327688,
       "imag": 1.3304521080399465
    },
       "real": 0.334331311791763,
       "imag": 1.3304521066824482
       "real": 3.3433131263789395e-1,
       "imag": 1.330452107931903
    },
       "real": 1.0414380920438733,
       "imag": 2.0375588898138477
       "real": 0.334331311791763,
       "imag": 1.3304521066824482
```

```
},
{
    "real": 3.3433131263789395e-1,
    "imag": 1.330452107931903
},
{
    "real": 0.3343313111327688,
    "imag": 1.3304521080399465
},
{
    "real": 1.0414380926069962,
    "imag": 2.0375588873605355
}
]
},
"accessValues": {
    "PORT_1A": 2,
    "PORT_1B": 1,
    "PORT_1C": 0
}
```